Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 848: 157676, 2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-35926600

RESUMO

The extraction of surface mined bitumen from oil sands deposits in northern Alberta, Canada produces large quantities of liquid tailings waste, termed oil sands process-affected water (OSPW), which are stored in large tailings ponds. OSPW-derived chemicals from several tailings ponds migrating past containment structures and through groundwater systems pose a concern for surface water contamination. The present study investigated the toxicity of groundwater from near-field sites adjacent to a tailings pond with OPSW influence and far-field sites with only natural oil sands bitumen influence. The acute toxicity of unfractionated groundwater and isolated organic fractions was assessed using a suite of aquatic organisms (Pimephales promelas, Oryzias latipes, Daphnia magna, Hyalella azteca, Lampsilis spp., Ceriodaphnia dubia, Hexagenia spp., and Vibrio fischeri). Assessment of unfractionated groundwater demonstrated toxicity towards all invertebrates in at least one far-field sample, with both near-field and far-field samples with bitumen influence toxic towards P. promelas, while no toxicity was observed for O. latipes. When assessing the unfractionated groundwater and isolated organic fractions from near-field and far-field groundwater sites, P. promelas and H. azteca were the most sensitive to organic components, while D. magna and L. cardium were most sensitive to the inorganic components. Groundwater containing appreciable amounts of dissolved organics exhibited similar toxicities to sensitive species regardless of an OSPW or natural bitumen source. The lack of a clear distinction in relative acute toxicities between near-field and far-field samples indicates that the water-soluble chemicals associated with bitumen are acutely toxic to several aquatic organisms. This result, combined with the similarities in chemical profiles between bitumen-influenced groundwater originating from OSPW and/or natural sources, suggests that the industrial bitumen extraction processes corresponding to the tailings pond in this study are not contributing unique toxic substances to groundwater, relative to natural bitumen compounds present in groundwater flow systems.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Alberta , Animais , Organismos Aquáticos , Hidrocarbonetos , Campos de Petróleo e Gás , Água , Poluentes Químicos da Água/análise
2.
Chemosphere ; 209: 767-775, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29960944

RESUMO

Although many studies have addressed the ability of subsurface filtration systems to remove emerging contaminants from wastewater at micro- and mesocosm-scale, little is known about their performance on full-scale wastewater treatment facilities. To understand better how effective these systems can be for municipal wastewater polishing, we assessed the ability of a full-scale lagoon-subsurface filter system located in Dunnottar, Manitoba, Canada, to attenuate regulatory wastewater parameters, nutrients, pharmaceuticals, and toxicity over the course of the discharge periods in 2015 and 2016 (June-October). Pharmaceuticals included ß-blockers, anticonvulsant drugs, and macrolide and sulfonamide antibiotics. Out of six consistently detected pharmaceuticals, four were efficiently removed through lagoon treatment (e.g. clarithromycin, metoprolol, propranolol), while two persisted to a certain extent (e.g. carbamazepine, sulfamethoxazole), even after subsurface filtration. Attenuation was observed for nutrients with averages of 40% and 60% for ammonia and total phosphorus respectively within the filter, consistent with previous pilot-scale studies at this facility. Compliance with regulations for conventional wastewater parameters at the effluent was observed, as well as reduced acute toxicity (as determined by Microtox®) from the primary lagoon to the effluent, and little likelihood of acute toxicity in receiving waters. Our results suggest that first, the full-scale system has an overall similar performance when compared to the previously studied pilot-scale system; second, there was no apparent effect of acclimation on the attenuation of studied contaminants or toxicity; and finally, the concentrations of contaminants do not appear to pose an acute risk for aquatic species in the receiving environment.


Assuntos
Esgotos/química , Poluentes Químicos da Água/química , Medição de Risco , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise
3.
PLoS One ; 11(8): e0160497, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27479304

RESUMO

It is commonly assumed that the most accurate data on fatty acid (FA) contents are obtained when samples are analyzed immediately after collection. For logistical reasons, however, this is not always feasible and samples are often kept on ice or frozen at various temperatures and for diverse time periods. We quantified temporal changes of selected FA (µg FAME per mg tissue dry weight) from 6 fish species subjected to 2 handling and 3 storage methods and compared them to FA contents from muscle tissue samples that were processed immediately. The following species were investigated: Common Carp (Cyprinus carpio), Freshwater Drum (Aplodinotus grunniens), Channel Catfish (Ictalurus punctatus), Antarctic Eelpout (Pachycara brachycephalum), Rainbow Trout (Oncorhynchus mykiss) and Arctic Charr (Salvelinus alpinus). The impact of storage method and duration of storage on FA contents were species-specific, but not FA-specific. There was no advantage in using nitrogen gas for tissue samples held on ice for 1 week; however, holding tissue samples on ice for 1 week resulted in a loss of FA in Charr. In addition, most FA in Trout and Charr decreased in quantity after being stored between 3 and 6 hours on ice. Freezer storage temperature (-80 or -20°C) also had a significant effect on FA contents in some species. Generally, we recommend that species with high total lipid content (e.g. Charr and Trout) should be treated with extra caution to avoid changes in FA contents, with time on ice and time spent in a freezer emerging as significant factors that changed FA contents.


Assuntos
Ácidos Graxos/análise , Peixes/metabolismo , Manejo de Espécimes/métodos , Animais , Carpas/metabolismo , Peixes-Gato/metabolismo , Cromatografia Gasosa , Gases/química , Lipídeos/análise , Nitrogênio/química , Oncorhynchus mykiss/metabolismo , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...